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On the Resolution of Slow-Neutron Spectrometers. 
II. The Resolution Function for Time-of-Flight Diffraetometry 

BY A. D. STOICA 

Institute for Atomic Physics, Bucharest, P. O. Box 35, Romania 

(Received 30 May 1974; accepted 12 August 1974) 

The normal approximation to the resolution function defined in the scattering-vector space is calculated 
for a time-of-flight (TOF) diffractometer. The application to powder and single-crystal diffractometry is 
discussed. The conditions of time focusing are derived in a simple way. The quasielastic scattering case 
is also considered. 

Introduction 

The conventional neutron-diffraction technique for 
structure analysis makes use of crystal diffractometers 
at steady reactors. A time-of-flight (TOF) version of 
the diffraction technique has also been developed 
during recent years, mostly at pulsed neutron sources 
(Buras & Leciejewicz, 1963, 1964; Buras, Leciejewicz, 
Nitc, Sosnowska, Sosnowski & Shapiro, 1964; Buras, 
Mikke, Lebech & Leciejewicz, 1965; Reichelt & 
Rodgers, 1966; Steichele & Arnold, 1973). In this 
version a pulsed polychromatic beam impinges on the 
sample and the time of arrival at the detector of the 
neutrons scattered at fixed angle is measured. Various 
aspects of the TOF method (intensity, focusing effects, 
resolution) have been treated in several papers (Buras, 
1963; Buras & Holas, 1968; Holas, 1968a, b). 

In the case of powder diffractometry a one-dimen- 
sional time-of-flight resolution function may be de- 
fined. For single-crystal samples, however, one needs a 
resolution function in the three-dimensional Q space, 
similar to the one defined for conventional diffraction 
by Cooper & Nathans (1968). To our knowledge, no 
calculations have been so far reported on this function 
for TOF diffraction. It is the aim of this paper to 
calculate and to discuss it. 

The diffractometer resolution function R ( Q - Q 0 )  is 
defined generally through the relation: 

I(Q°)= S R(Q-Qo)a(Q)dQ (1) 

where I(Q0) is the measured weighted mean value of 
the elastic cross section a (Q)=  (dG/d~Q)el, Q = k ~ - k  s, 
Q0 =k~0-ks0. Here k~ and k s are the wave vectors of 
the incident and scattered neutrons, and kzo and kso the 
corresponding mean values. 

An accurate general method of calculating resolution 
functions has been described in the preceding paper 
(Stoica, 1975). The tensors of any-order moments of 
the three-dimensional resolution function R ( Q - Q o )  
can be calculated if one knows (1) the matrix relating 
the components of the vector Q - Q 0  with the original 
variables of the problem (the 'original parameters') 

and (2) the tensors of the same order of the original- 
parameter probability distribution moments. 

The resolution function for elastic scattering is calcu- 
lated in § 1. The calculation procedure makes use of two 
transformations: one from the original variables (spatial 
and temporal coordinates) to the intermediate recipro- 
cal coordinates in the wave-vector space, and subse- 
quently one from the intermediate coordinates to the na- 
tural variables of the resolution function. This procedure 
makes it possible to account for the spatial configura- 
tion of the TOF diffraction set-up and for the related 
effects of time focusing. These focusing effects are dis- 
cussed in § 2. In § 3 the quasielastic scattering case is 
considered. 

1. The resolution function in the normal approximation 

A schematic representation of a TOF diffraction ex- 
periment geometry is shown in Fig. 1. The case of a 
pulsed reactor is considered. The original variables 
characterizing the scattering process are: (1) the co- 
ordinates of the neutron emission point from the 
moderator, r0: (2) the moment of emission to; (3) the 
coordinates of the point where the scattering takes place, 
rl; (4) the coordinates of the detection point r2; and, 
finally, (5) the moment of detection t2. All these variab- 
les are deviations from the corresponding mean values. 
To calculate the resolution function in the normal ap- 
proximation one has to know the matrix of their 
second-order probability moments. The structure of 
this matrix is given in Table 1. The elements marked by 
asterisks are zero if no Soller collimators are used. 

To calculate the covariance matrix of the resolution 
function it is convenient to introduce a set of inter- 
mediate parameters: e = Ak~/k~o, 7i, fit, ?i, fis, the same 
as for the conventional crystal diffractometer. Here 
Ak~=k~-k~o; ~,)'s and fi~,fij are the angular devia- 
tions from the most probable directions in the hori- 
zontal (scattering) plane and vertical plane respectively. 
In the linear approximation these intermediate param- 
eters are connected with the original ones by a matrix 
Tx whose elements are defined by the relations given in 
Appendix 1. The covariance matrix of the intermediate- 
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parameter probability distribution is obtained imme- 
diately as T,E/T[, where E/ is the matrix given in 
Table 1. Explicitly, one obtains: 

<:7 = roe(<to~> + <tD) + L~'(<:,o~> 
+ 4 sin z O~(y~) + (x  2) 

(eye) = L ;  ZLo~((XoYo) + 2 sin O~(yoy~) 
- 2  sinZO~(x~y~) - 2 sin 0~ cos O~(y~)) 

(e),:) =L~IL;~(2  sin 0~ cos O~(y~)-2 sin / O~(x~y~) 
+ ( x s Y z ) -  2 sin O~(y~y2)) 

(y~) = L~2( ( y~ )  - 2 sin O~(yox,)- 2 cos O~(yoy,) 
+ sin 20~(x~> + 2 sin 0~ cos Os(x~y,) 
+cos  / O~<y~)) 

(y~> = Li-Z(sin z Os(x~)- 2 sin 0~ cos O~(x~y~> 
+cos '~ O/y~) + 2 sin O/x~ys>- 2 cos O/y~ys) 
+<y~>) 

(7~7:)  = Li-'ZL2-~( s in20s(x2> - c o s 2 0 s ( y  2) 

- s i n  0~ (yoxt) + sin O~(xty2> + cos 0~(3'oYl) 
+ cos 0~ (Y~Y2) 

(6~) = Li- 2((z~) + (Zl 2) - 2(ZoZ,)) 

(d}) = L~- 2((z~) + (z~) - 2(z~zs)) 

(d,fi:) = L~ 'Lr  '((ZoZ, ) - (z~) + (zlz2)) . (2) 

To obtain the covariance matrix of the resolution 
function in the X = Q - Q o  space one has to know the 
matrix of the linearized relation between X~ and the 

Ye/eeto: 

£e 

~p/e 
/0,," 

Fig. 1. The geometry of a TOF diffraction arrangement at a 
pulsed reactor. Lt is the distance from moderator  to sample, 
L2 is the distance from sample to detector, L0 = L, + Ls. The 
coordinate systems used in the computations are shown. 

intermediate parameters. This matrix is defined by the 
relations given in Appendix 2. For the covariance 
matrix elements one gets then: 

<xl> 

<xl> 

<xD 

<x,x~> = 2k~o sin / ox<~n> + <~,:>) 
-k~o sin 0~ cos 0~((y~)- (y~>). 

=4k~0 sin 20s(eZ>-4k2o sin 0~ cos 0~(@yi> 

- <~:  >) + k~o c o :  oX <~ > + < ~  > - 2 <~ ,~: >) 

=k~0 sin / Os((),~)+ (y~)+ 2(y,y:))  

= k~0(<~> + <~> + <~:s>) 

(3) 

The resolution function in the normal approximation 
is given by the expression: 

3 

R(X)=Ro(2rc)-a/Z[{Mu}[I//exp ( - ½  ~ M~.~X~Xj) (4) 
l , j , = l  

where the resolution matrix {Mu} is the inverse of the 
covariance matrix {(X~Xj)}. 

In a TOF diffraction experiment the diffraction 
pattern is obtained as a time-of-flight spectrum. It is 
of interest to calculate the widths of the Bragg peaks 
appearing in such a spectrum. The time dispersion of 
these peaks can be calculated easily with the aid of (4). 
For a single-crystal sample with mosaic spread r/ 
the following expression is obtained for the time 
dispersion (/IT2> of the peak centred around the time 
To and corresponding to a reciprocal-lattice vector 
2rex = Q0: 

(Xlx~> 2 
). (5) 

From this general expression, the particular cases of 
ideal single crystals and powder samples are obtained 
by putting r/= 0 and r/= co respectively. 

2. Focusing effects in T O F  diffractometry 

The TOF diffraction pattern represents a scan along 
X1 in the reciprocal lattice of the sample crystal. It is 
equivalent to the 8:20 scan in conventional diffraction. 

Because of the angular distribution of the mosaic 
blocks, the Bragg scattering for a given reciprocal-lattice 
vector xis restricted to Q - Q 0  contained in surface 
normal to Q0, i.e. normal to the direction of the scan. 
Focusing effects may therefore occur when the major 

E 2 ~-- 

Table 1. The structure of  the eovariance matrix of  the original parameters of  the problem 

<to~> o o o o o o o o o o 
o <t{> o o o o o o o o o 
o o <xo~> <Xoyo> o o o o o o o 
o o (xoyo) (y~ > o (x, yo >* (yoy,)* o o o o 
o o o o <zoO> o o <ZoZ,>* 0 0 0 
0 0 0 (X,yo)* 0 (x~) (xxyt> 0 0 (Xxy2>* 0 
0 0 0 (yoyl)* 0 (x,y,) (y~ > 0 0 (y,y2 >* 0 
o o o o <zoz1>* o o <zD o o <z:2>* 
0 0 0 0 0 0 0 0 (x~) (xmY2> 0 
0 0 0 0 0 (x,Ym)* (YtYs)* 0 (x2Y2) (Y~) 0 
o o o o o o o <~:2>* o o <~{> 
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axis of the resolution ellipse in the scattering plane is 
also normal to X1. These effects are analogous to those 
occurring when dispersion surfaces are measured with 
triple-axis spectrometers. 

The orientation of the resolution ellipsoid in recip- 
rocal space is sensitive to the shape of the moderator, 
the sample and the detector. To describe this effect, we 
shall replace the actual shapes by ellipsoids having the 
same second-order moments of the coordinates in real 
space. Let M, and m, (n=0,1,2) be the dispersions 
along the two axes of the real-space ellipsoids which 
are contained in the scattering plane, and let c~,, be the 
angle between the major axis and the y, coordinate axis 
(see Fig. 1). The corresponding elements of the matrix 
shown in Table 1 then have the following expressions: 

(x~) =cos z ~,m, + sin z 0~nM, 

(yn z) = sin z ~,mn + cos z c~,Mn 

( x , y , )=  sin c~, cos c~,(m,-M,) .  (6) 

When one of the M,, becomes very large, the major 
axis of the resolution ellipse in the X1,X2 plane tends 
to become orientated along a certain asymptotic direc- 
tion. This direction can easily be found by neglecting in 
the matrix of Table 1 all the elements which do not 
contain that M,,. For the angle/?, between the asymp- 
totic (M,,--+ co) direction and the )(1 axis one obtains 
through (2) and (3) the following expressions: 

ctg fl0 = - c t g  0s -  2(L1/Lo) tg e~o 

ctg fll = 

(4/Lo) tg Os+(1/L1 + 1/Lz) ctg Os-(1/L~-1/L2) tg ~ 
( l /L1-  1/Lz)-(1/LI + 1/L2) tg 0s tg ~ 

ctg flz=ctg Os- 2(Lz/Lo) tg ~2. (7) 

The focusing conditions correspond to fin = re/2: 

tg e0 = -(½) (1 + Lz/L1) ctg 0s 

tg cq= -(LI/Lz/LO-14 tg 0s+(2 + L1/Lz 
+ Lz/LO ctg 0s 

tg c~z = (½-) (1 + L~/LE) ctg 0s. (8) 

The conditions minimize simultaneously (X~) and 
(X~Xz) z. For this reason they coincide with the con- 
ditions obtained by Holas (1968b) for the minimiza- 
tion of the time dispersion of Bragg peaks for powders. 

3. Quasielastic scattering ease 

These resolution function defined in {Q} space has the 
advantage of being useful for different types of elastic 
cross section. Moreover, it also make it possible to treat 
the case of quasielastic scattering. 

In considering the quasielastic-scattering case, care 
must be taken to account for the differences between 

conventional and TOF measurements at fixed angle 
without energy analysis. Because in TOF diffraction 
measurements neither the incident nor the final energy 
of the neutron is fixed, the measured quantity at fixed 
angle is not da/df2 as in the case of a crystal diffractom- 
eter. In fact, one can define a modified (do'/dQ)TOF 
which is obtained by integrating the scattering law 
S(Q, co) along a certain curve in {Q, co} space. This 
curve does not coincide with the curve implied in the 
definition of da/df2. 

Considering the case of small energy transfers (quasi- 
elastic scattering), one has: 

m 
Ak s = Aki hk~o 

m L2 
Ak, = Akto + - -  co 

hk~o L1W L2 

where Ak~o is the deviation of k~ from k~o for purely 
elastic scattering. 

The deviation X of the wave-vector transfer from the 
mean value will now include a contribution X~o due to 
the inelasticity of the scattering: 

m L 2 -  L1 
21 = X~o + XI~ = X~o+ - -  sin Osco 

hkto L2 + L1 

m 
x2 = X2o + x2~ = X~o+ ~ cos 0s~o 

X3=Xao • (9) 

The expressions for Xlo, X2o, X3o are those given in 
Appendix 2 for purely elastic scattering. 

The measured intensity of scattered neutrons at 
fixed angle will be: 

P 
l(Qo) = .~R(Xo) (da/di2)ToFdXo (10) 

v.] 

where 

(da/d~2)TOF oC I S(Q + X~o, co)dco 

m L z - L j .  hk~o 
X,o = . h k ~  L 2 + L1 ~ sin 0s, ~ - -  ( cos Os , 0). 

(11) 

The conventional two-axis measurement case may 
be obtained by putting L2 = 0: 

X,o= - ~ s i n 0 s , ~ c O S 0 s , 0  . 

It is seen that X,o is normal to Q0 if L1 =L2. This 
means that in (11) one effectively integrates the scatter- 
ing law at constant Q. This is important (Carpenter & 
Sutton, 1972) since the measurement then gives directly 

the static structure factor F ( Q ) = h  I S(Q, (D) d(D, pro- 
I g  

vided that the scattering is indeed quasielastic and that 
S(Q, o)) has a weak dependence on the orientation of 
O. 
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;,o 
Fig. 2. The scattering diagram for the elastic scattering case. 

One should pay attention to the following circum- 
stance: the integral (10) may also be put in the form 

l(Qo)oC I R ( X -  X~,)S(Qo + X, co)dXdco. (12) 

The function R*(X, co)=R(X-X~,) in this relation 
does not have the properties required for a resolution 
function in the {Q, co} space, because its covariance 
matrix is singular and therefore R*(X,o~) is not zero 
at all points at infinity. 
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APPENDIX 1 

By using the notations from Fig. 1 and by taking into 
account that k t=(m/h) (L /T)  and kio=(m/h)(Lo/To), 
one obtains in a first approximation e - A k J k t o  
= (AL/Lo) - (A T/To). In the small-angle approximation 
one obtains then: 

to-t2 io(rl-  ro) +i2(r2- r~) 
e - - - +  

To L1 + L2 

to-  t2 - x 0 -  2 sin Osyl + x2 - + 

To L1 + L2 

~'~ = (rd0 - rojo)/L~ = ( -  Yo + sin O~xx + cos O~y~)/L1 

fit = (rtko - roko)/L~ = ( - Zo + zO/Lt 

Y: = (hj2-rd2)/L2 =(sin Osx~-cos Osyl +y~)L, 
~: =(rzk2-r tk2) /L2=(-  z~ + Zz)/L2 . 

APPENDIX 2 

The most probable scattering vector is Qo=k to -k :o  
with kto=k:o . The coordinate system is chosen as in 
Fig. 2. Then 

iS<to\ 
Qo=R'(~o)tO )-R'(~o-2Os)tO ) 

where R'(~0) is the transpose of the rotation matrix 
around the axis z by an angle ~0. It results that: 

Qo = [cos tp - cos (~0 - 20s)]kt0i 
- [s in  tp- sin (tp-20s)]kM. 

Let the coordinate axis x be directed along Q0. 
This means ~0 = 0s -  (n/2) sign Os- Os- (n/2)~. By using 
the notation from Fig. 2 one obtains in the small-angle 
approximation: 

)(1 = 2~kt0 sin 0s + ~kt0 cos 0s(-  7't + Y:) 

X2=~kto sin 0~(yt + ~':) 

X3 = k t o ( 0 t - O : )  • 

The sign of 0~ has no influence on the even-order 
moments of the resolution function, but determines the 
sign of the odd-order moments. Therefore changing 
the sense of 0~ changes the sign of the asymmetrical 
part of the resolution function in {Q} space. 
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